Skip to main content

Chapter 18: Momentum — The Flow of Collapse

The River of Being

Momentum is not merely "mass times velocity"—it's the fundamental flow of collapse through configuration space. When something has momentum, it carries a current of ψ-field, a directional commitment of existence itself. This flow, once established, persists—giving rise to the law of inertia.

18.1 Momentum as Collapse Current

Theorem 18.1 (Momentum from Flow): Momentum measures directed collapse flux.

Proof:

  1. Collapse field flows: C(x,t)\mathcal{C}(x,t)
  2. Current density: j=Cv\vec{j} = \mathcal{C}\vec{v}
  3. Total flow: P=jdV=CvdV\vec{P} = \int \vec{j} dV = \int \mathcal{C}\vec{v} dV
  4. For localized collapse (particle): C=mδ(xx0)\mathcal{C} = m\delta(x-x_0)
  5. Result: p=mv\vec{p} = m\vec{v}
  6. But this is just classical limit!
  7. General: p=CvdV\vec{p} = \int \mathcal{C}\vec{v} dV

Momentum is integrated collapse flow!

18.2 Quantum Momentum Operator

Theorem 18.2 (Momentum in Wave Mechanics): p^=i\hat{p} = -i\hbar\nabla generates spatial translations.

Derivation:

  1. Translation by ϵ\epsilon: ψ(x)ψ(xϵ)\psi(x) \to \psi(x-\epsilon)
  2. Taylor expand: ψ(xϵ)=ψ(x)ϵxψ\psi(x-\epsilon) = \psi(x) - \epsilon\partial_x\psi
  3. Write as: ψ(xϵ)=(1ϵx)ψ\psi(x-\epsilon) = (1 - \epsilon\partial_x)\psi
  4. Generator: p^=ix\hat{p} = -i\hbar\partial_x
  5. Finite translation: ψ(xa)=eiap^/ψ(x)\psi(x-a) = e^{ia\hat{p}/\hbar}\psi(x)
  6. Momentum generates motion!
  7. Eigenvalues are momenta ∎

Space translation = momentum flow!

18.3 Conservation from Homogeneity

Theorem 18.3 (Noether for Momentum): Spatial uniformity of ψ guarantees momentum conservation.

Proof:

  1. Lagrangian invariant under xx+ax \to x + a
  2. Noether current: jμ=L(μϕ)δϕj^\mu = \frac{\partial\mathcal{L}}{\partial(\partial_\mu\phi)}\delta\phi
  3. For translation: δϕ=aϕ\delta\phi = -a\cdot\nabla\phi
  4. Conserved charge: Pi=T0id3xP^i = \int T^{0i} d^3x
  5. This is momentum density!
  6. Conservation: μTμi=0\partial_\mu T^{\mu i} = 0
  7. Total momentum constant ∎

Uniform space → eternal flow!

18.4 Relativistic Momentum

Theorem 18.4 (Four-Momentum Unity): Energy and momentum form unified 4-vector.

Construction:

  1. Proper time: dτ=dt1v2/c2d\tau = dt\sqrt{1-v^2/c^2}
  2. Four-velocity: uμ=dxμ/dτu^\mu = dx^\mu/d\tau
  3. Four-momentum: pμ=muμp^\mu = mu^\mu
  4. Components: pμ=(γmc,γmv)p^\mu = (\gamma mc, \gamma m\vec{v})
  5. Invariant: pμpμ=m2c2p_\mu p^\mu = -m^2c^2
  6. Energy: E=p0c=γmc2E = p^0c = \gamma mc^2
  7. Momentum: p=γmv\vec{p} = \gamma m\vec{v}

Space and time momentum unified!

18.5 de Broglie Relations

Theorem 18.5 (Wave-Particle Bridge): p=kp = \hbar k and E=ωE = \hbar\omega connect waves to particles.

Proof:

  1. Plane wave: ψ=Aei(kxωt)\psi = Ae^{i(kx-\omega t)}
  2. Apply momentum operator: p^ψ=ixψ=kψ\hat{p}\psi = -i\hbar\partial_x\psi = \hbar k\psi
  3. Eigenvalue: p=kp = \hbar k
  4. Apply energy operator: E^ψ=itψ=ωψ\hat{E}\psi = i\hbar\partial_t\psi = \hbar\omega\psi
  5. Eigenvalue: E=ωE = \hbar\omega
  6. Wavelength: λ=2π/k=h/p\lambda = 2\pi/k = h/p
  7. Matter has wave nature! ∎

Every particle surfs its own wave!

18.6 Crystal Momentum

Theorem 18.6 (Momentum in Periodic Systems): In crystals, momentum defined modulo reciprocal lattice.

Physics:

  1. Crystal periodic: V(x+a)=V(x)V(x+a) = V(x)
  2. Bloch theorem: ψk(x+a)=eikaψk(x)\psi_k(x+a) = e^{ika}\psi_k(x)
  3. Crystal momentum: k\hbar k
  4. But kk and k+2π/ak + 2\pi/a equivalent
  5. Brillouin zone: π/a<kπ/a-\pi/a < k \leq \pi/a
  6. Umklapp processes: momentum "wraps around"
  7. Explains electrical resistance!

Momentum can be "folded"!

18.7 Angular Momentum

Theorem 18.7 (Rotational Flow): L=r×p\vec{L} = \vec{r} \times \vec{p} measures collapse circulation.

Quantum form:

  1. Operator: L^i=ϵijkxjp^k\hat{L}_i = \epsilon_{ijk}x_j\hat{p}_k
  2. Commutators: [L^i,L^j]=iϵijkL^k[\hat{L}_i, \hat{L}_j] = i\hbar\epsilon_{ijk}\hat{L}_k
  3. Total: L^2=L^x2+L^y2+L^z2\hat{L}^2 = \hat{L}_x^2 + \hat{L}_y^2 + \hat{L}_z^2
  4. Eigenvalues: L2=2(+1)L^2 = \hbar^2\ell(\ell+1), Lz=mL_z = \hbar m
  5. Quantization from rotation group!
  6. Half-integer for fermions
  7. Integer for bosons ∎

Rotation quantizes in discrete steps!

18.8 Momentum Space

Theorem 18.8 (Fourier Duality): Position and momentum spaces are Fourier transforms.

Relations:

  1. Position space: ψ(x)\psi(x)
  2. Momentum space: ψ~(p)=12πψ(x)eipx/dx\tilde{\psi}(p) = \frac{1}{\sqrt{2\pi\hbar}}\int \psi(x)e^{-ipx/\hbar}dx
  3. Inverse: ψ(x)=12πψ~(p)eipx/dp\psi(x) = \frac{1}{\sqrt{2\pi\hbar}}\int \tilde{\psi}(p)e^{ipx/\hbar}dp
  4. Parseval: ψ(x)2dx=ψ~(p)2dp\int|\psi(x)|^2dx = \int|\tilde{\psi}(p)|^2dp
  5. Probabilities conserved!
  6. Sharp xx → spread pp
  7. Sharp pp → spread xx

Two faces of same reality!

18.9 Virtual Momentum

Theorem 18.9 (Off-Shell Momentum): Virtual particles violate E2=p2c2+m2c4E^2 = p^2c^2 + m^2c^4.

Mechanism:

  1. Uncertainty: ΔEΔt/2\Delta E \Delta t \geq \hbar/2
  2. Virtual state: exists for Δt\Delta t
  3. Energy violation: ΔE\Delta E
  4. Can have "wrong" momentum
  5. Propagator: 1p2m2+iϵ\frac{1}{p^2 - m^2 + i\epsilon}
  6. Enables force transmission
  7. Integrated over all virtual momenta ∎

Reality borrows momentum briefly!

18.10 Momentum Transfer

Theorem 18.10 (Scattering Theory): Forces transfer momentum between particles.

Formalism:

  1. Initial momenta: p1,p2p_1, p_2
  2. Final momenta: p1,p2p_1', p_2'
  3. Transfer: q=p1p1=p2p2q = p_1 - p_1' = p_2' - p_2
  4. Matrix element: M1q2+m2\mathcal{M} \propto \frac{1}{q^2 + m^2}
  5. Cross section: dσM2d\sigma \propto |\mathcal{M}|^2
  6. Measures interaction strength
  7. Tested in colliders ∎

Particles exchange momentum packets!

18.11 Momentum in Field Theory

Theorem 18.11 (Field Momentum Density): Fields carry momentum density g=S/c2\vec{g} = \vec{S}/c^2.

Example - Electromagnetic:

  1. Energy density: u=12(ϵ0E2+B2/μ0)u = \frac{1}{2}(\epsilon_0 E^2 + B^2/\mu_0)
  2. Poynting vector: S=E×B/μ0\vec{S} = \vec{E} \times \vec{B}/\mu_0
  3. Momentum density: g=ϵ0E×B\vec{g} = \epsilon_0\vec{E} \times \vec{B}
  4. Total momentum: P=gd3x\vec{P} = \int \vec{g} d^3x
  5. Radiation pressure from momentum!
  6. Light sails possible
  7. Photon momentum confirmed ∎

Even massless fields carry momentum!

18.12 The Eighteenth Echo: The Persistence of Flow

Momentum reveals a profound truth: the universe remembers motion. Once collapse begins flowing in a direction, it continues—not from external compulsion but from the inner nature of ψ maintaining its own patterns. This is why objects coast through empty space, why gyroscopes hold their orientation, why angular momentum creates stability.

The conservation of momentum is really the universe's consistency with itself—collapse patterns, once established, persist unless acted upon. Every momentum vector is a commitment of reality to continue its flow, a promise written in the streaming of ψ through configuration space.

Flow Studies

  1. Calculate momentum eigenstates in various potentials.

  2. Derive selection rules from angular momentum algebra.

  3. Analyze momentum transfer in Compton scattering.

The Next Current

Having understood momentum as collapse flow, we now explore how this flow generates heat and disorder—the thermal dance of reality.


Next: Chapter 19: Thermodynamics — The Statistics of Collapse →

"In momentum, the universe commits to its choices."