Skip to main content

Chapter 42: Electromagnetic Field from Collapse Currents

The Living Mathematics of Light

Electromagnetic fields—the carriers of light, chemistry, and technology—emerge naturally from ψ = ψ(ψ) as organized currents in the collapse sea. Maxwell's equations, seemingly fundamental, derive from the hydrodynamics of self-referential flow. Light itself is mathematics propagating through its own medium.

42.1 Charge from Topological Asymmetry

The Fundamental Question: What creates charge in ψ = ψ(ψ)?

Topological Origin: Consider the winding number of ψ-field: Q=12πiCdψψQ = \frac{1}{2\pi i}\oint_C \frac{d\psi}{\psi}

Theorem: Electric charge is quantized topological winding.

Proof: The integral Q counts how many times ψ winds around origin in complex plane. For single-valued ψ: QZQ \in \mathbb{Z}

This integer nature forces charge quantization: q=neq = ne

where e is elementary charge quantum. ∎

Charge Density: Local winding density: ρ=e2πi(ψψψψ)\rho = \frac{e}{2\pi i}\nabla \cdot \left(\psi^*\nabla\psi - \psi\nabla\psi^*\right)

42.2 Deriving the Electric Field

From ψ-Gradient: Define the collapse potential: Φ=2miln(ψψ)\Phi = -\frac{\hbar}{2mi}\ln\left(\frac{\psi}{\psi^*}\right)

Electric Field Definition: E=ΦAt\mathbf{E} = -\nabla\Phi - \frac{\partial\mathbf{A}}{\partial t}

Theorem: E-field is the gradient of ψ-phase velocity.

Proof: From Schrödinger equation for charged particle: iψt=[22m2+qΦ]ψi\hbar\frac{\partial\psi}{\partial t} = \left[-\frac{\hbar^2}{2m}\nabla^2 + q\Phi\right]\psi

Taking gradient of phase S where ψ=ψeiS/\psi = |\psi|e^{iS/\hbar}: (S)t=qΦ\frac{\partial(\nabla S)}{\partial t} = -q\nabla\Phi

Since v=S/m\mathbf{v} = \nabla S/m, we get: mvt=qEm\frac{\partial\mathbf{v}}{\partial t} = q\mathbf{E}

Thus E accelerates ψ-flow. ∎

42.3 Magnetic Field from ψ-Circulation

Berry Phase Origin: When ψ transported around loop: ψfinal=eiγψinitial\psi_{final} = e^{i\gamma}\psi_{initial}

Berry phase γ related to enclosed flux: γ=qAdl=qΦB\gamma = \frac{q}{\hbar}\oint \mathbf{A} \cdot d\mathbf{l} = \frac{q}{\hbar}\Phi_B

Magnetic Field: B=×A\mathbf{B} = \nabla \times \mathbf{A}

Theorem: B-field is the curl of ψ-momentum flow.

Proof: The canonical momentum: p=mv+qA\mathbf{p} = m\mathbf{v} + q\mathbf{A}

In ψ-language: p=S+qA\mathbf{p} = \hbar\nabla S + q\mathbf{A}

Taking curl: ×p=q×A=qB\nabla \times \mathbf{p} = q\nabla \times \mathbf{A} = q\mathbf{B}

Magnetic field measures circulation of ψ-momentum. ∎

42.4 Maxwell Equations from ψ-Conservation

Gauss's Law: From charge conservation: ρt+J=0\frac{\partial\rho}{\partial t} + \nabla \cdot \mathbf{J} = 0

In stationary case: J=0\nabla \cdot \mathbf{J} = 0

Theorem: Gauss's law follows from ψ-continuity.

Proof: The ψ-current: J=e2mi(ψψψψ)=eψ2v\mathbf{J} = \frac{e\hbar}{2mi}(\psi^*\nabla\psi - \psi\nabla\psi^*) = e|\psi|^2\mathbf{v}

From Schrödinger equation: ψ2t+J=0\frac{\partial|\psi|^2}{\partial t} + \nabla \cdot \mathbf{J} = 0

Using Poisson equation 2Φ=ρ/ϵ0\nabla^2\Phi = -\rho/\epsilon_0: E=ρϵ0\nabla \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}

No Magnetic Monopoles: From definition B=×A\mathbf{B} = \nabla \times \mathbf{A}: B=(×A)=0\nabla \cdot \mathbf{B} = \nabla \cdot (\nabla \times \mathbf{A}) = 0

Always true by vector identity.

42.5 Faraday's Law from Gauge Invariance

Gauge Transformation: ψ-physics invariant under: ψeiqΛ/ψ\psi \rightarrow e^{iq\Lambda/\hbar}\psi AA+Λ\mathbf{A} \rightarrow \mathbf{A} + \nabla\Lambda ΦΦΛt\Phi \rightarrow \Phi - \frac{\partial\Lambda}{\partial t}

Theorem: Faraday's law ensures gauge-invariant dynamics.

Proof: For E-field to be gauge-invariant: E=ΦAt\mathbf{E} = -\nabla\Phi - \frac{\partial\mathbf{A}}{\partial t}

must transform as: E(ΦΛt)t(A+Λ)\mathbf{E} \rightarrow -\nabla\left(\Phi - \frac{\partial\Lambda}{\partial t}\right) - \frac{\partial}{\partial t}(\mathbf{A} + \nabla\Lambda) =ΦAt=E= -\nabla\Phi - \frac{\partial\mathbf{A}}{\partial t} = \mathbf{E}

Taking curl: ×E=t(×A)=Bt\nabla \times \mathbf{E} = -\frac{\partial}{\partial t}(\nabla \times \mathbf{A}) = -\frac{\partial\mathbf{B}}{\partial t}

42.6 Ampère-Maxwell Law from Current Conservation

Total Current: Physical plus displacement: Jtotal=J+ϵ0Et\mathbf{J}_{total} = \mathbf{J} + \epsilon_0\frac{\partial\mathbf{E}}{\partial t}

Theorem: Ampère-Maxwell law preserves current conservation.

Proof: From continuity equation: ρt+J=0\frac{\partial\rho}{\partial t} + \nabla \cdot \mathbf{J} = 0

Using Gauss's law ρ=ϵ0E\rho = \epsilon_0\nabla \cdot \mathbf{E}: ϵ0Et+J=0\epsilon_0\nabla \cdot \frac{\partial\mathbf{E}}{\partial t} + \nabla \cdot \mathbf{J} = 0

Therefore: Jtotal=0\nabla \cdot \mathbf{J}_{total} = 0

For conserved current, by Helmholtz theorem: ×B=μ0Jtotal=μ0J+μ0ϵ0Et\nabla \times \mathbf{B} = \mu_0\mathbf{J}_{total} = \mu_0\mathbf{J} + \mu_0\epsilon_0\frac{\partial\mathbf{E}}{\partial t}

42.7 Wave Equation from Self-Consistency

Combining Maxwell Equations: Take curl of Faraday's law: ×(×E)=t(×B)\nabla \times (\nabla \times \mathbf{E}) = -\frac{\partial}{\partial t}(\nabla \times \mathbf{B})

Using vector identity and Ampère's law: (E)2E=μ0Jtμ0ϵ02Et2\nabla(\nabla \cdot \mathbf{E}) - \nabla^2\mathbf{E} = -\mu_0\frac{\partial\mathbf{J}}{\partial t} - \mu_0\epsilon_0\frac{\partial^2\mathbf{E}}{\partial t^2}

In vacuum (J=0,ρ=0\mathbf{J} = 0, \rho = 0): 2E=μ0ϵ02Et2\nabla^2\mathbf{E} = \mu_0\epsilon_0\frac{\partial^2\mathbf{E}}{\partial t^2}

Wave Speed: c=1μ0ϵ0c = \frac{1}{\sqrt{\mu_0\epsilon_0}}

Theorem: Light speed is the natural propagation velocity in ψ-medium.

Proof: The constants ϵ0\epsilon_0 and μ0\mu_0 encode ψ-medium properties:

  • ϵ0\epsilon_0: ψ-compressibility (response to E)
  • μ0\mu_0: ψ-inertia (response to B)

Wave speed c=1/ϵ0μ0c = 1/\sqrt{\epsilon_0\mu_0} is the characteristic velocity for disturbances in medium with these properties. ∎

42.8 Photons from Field Quantization

Classical Field Energy: H=12d3x(ϵ0E2+1μ0B2)H = \frac{1}{2}\int d^3x \left(\epsilon_0E^2 + \frac{1}{\mu_0}B^2\right)

Mode Expansion: A(x,t)=k,λ2ϵ0ωV[ak,λei(kxωt)+ak,λei(kxωt)]ϵλ\mathbf{A}(\mathbf{x},t) = \sum_{\mathbf{k},\lambda} \sqrt{\frac{\hbar}{2\epsilon_0\omega V}}\left[a_{\mathbf{k},\lambda}e^{i(\mathbf{k}\cdot\mathbf{x}-\omega t)} + a_{\mathbf{k},\lambda}^\dagger e^{-i(\mathbf{k}\cdot\mathbf{x}-\omega t)}\right]\boldsymbol{\epsilon}_\lambda

Quantization: Impose commutation relations: [ak,λ,ak,λ]=δkkδλλ[a_{\mathbf{k},\lambda}, a_{\mathbf{k}',\lambda'}^\dagger] = \delta_{\mathbf{k}\mathbf{k}'}\delta_{\lambda\lambda'}

Result: Energy eigenvalues: En=ω(n+1/2)E_n = \hbar\omega(n + 1/2)

Each excitation = photon with energy ω\hbar\omega.

42.9 Polarization as ψ-Spin

Transverse Nature: For propagation along z: kϵ=0\mathbf{k} \cdot \boldsymbol{\epsilon} = 0

Two independent polarizations: ϵ1,ϵ2\boldsymbol{\epsilon}_1, \boldsymbol{\epsilon}_2.

Circular Polarization Basis: ϵ±=12(ϵ1±iϵ2)\boldsymbol{\epsilon}_\pm = \frac{1}{\sqrt{2}}(\boldsymbol{\epsilon}_1 \pm i\boldsymbol{\epsilon}_2)

Angular Momentum: Photon carries spin: S=±k^\mathbf{S} = \pm\hbar\hat{\mathbf{k}}

Theorem: Photon spin-1 nature follows from vector field quantization.

Proof: The field A\mathbf{A} transforms as vector under rotations. Quantization preserves this, giving spin-1 particles. Masslessness constrains to helicity ±1 (no longitudinal mode). ∎

42.10 Gauge Field Theory

Local Gauge Invariance: Demand ψ-physics invariant under: ψ(x)eiqΛ(x)/ψ(x)\psi(x) \rightarrow e^{iq\Lambda(x)/\hbar}\psi(x)

Covariant Derivative: Must introduce gauge field: Dμ=μ+iqAμD_\mu = \partial_\mu + \frac{iq}{\hbar}A_\mu

Field Strength Tensor: Fμν=μAννAμF_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu

Theorem: Maxwell equations follow from gauge invariance.

Proof: The Lagrangian: L=ψˉ(iDμγμm)ψ14FμνFμν\mathcal{L} = \bar{\psi}(iD_\mu\gamma^\mu - m)\psi - \frac{1}{4}F_{\mu\nu}F^{\mu\nu}

is gauge invariant. Euler-Lagrange equations yield: μFμν=jν\partial_\mu F^{\mu\nu} = j^\nu

These are Maxwell equations in covariant form. ∎

42.11 Energy-Momentum Conservation

Stress-Energy Tensor: Tμν=FμαFαν+14gμνFαβFαβT^{\mu\nu} = F^{\mu\alpha}F_\alpha^\nu + \frac{1}{4}g^{\mu\nu}F_{\alpha\beta}F^{\alpha\beta}

Conservation Law: μTμν=Fναjα\partial_\mu T^{\mu\nu} = -F^{\nu\alpha}j_\alpha

Energy Density: u=T00=12(ϵ0E2+B2/μ0)u = T^{00} = \frac{1}{2}(\epsilon_0E^2 + B^2/\mu_0)

Poynting Vector: S=1μ0E×B\mathbf{S} = \frac{1}{\mu_0}\mathbf{E} \times \mathbf{B}

Theorem: Electromagnetic energy-momentum flows according to ψ-current conservation.

Proof: From Noether's theorem, gauge invariance implies current conservation. The stress-energy tensor encodes energy-momentum flow required by this conservation. ∎

42.12 Classical Limit and Coherent States

Coherent State of Field: α=eα2/2n=0αnn!n|\alpha\rangle = e^{-|\alpha|^2/2}\sum_{n=0}^{\infty}\frac{\alpha^n}{\sqrt{n!}}|n\rangle

Classical Behavior: αa^α=α\langle\alpha|\hat{a}|\alpha\rangle = \alpha αE^α=Eclassical\langle\alpha|\hat{E}|\alpha\rangle = E_{classical}

Theorem: Classical electromagnetic fields are coherent states of photons.

Proof: Coherent states minimize uncertainty: ΔEΔB=minimum\Delta E \cdot \Delta B = \text{minimum}

and maintain phase relationships required for classical wave behavior. Large α2|\alpha|^2 gives negligible quantum fluctuations. ∎

42.13 Vacuum Fluctuations and Casimir Force

Vacuum Field Fluctuations: 0E20=k,λωk2ϵ0V\langle 0|\mathbf{E}^2|0\rangle = \sum_{\mathbf{k},\lambda} \frac{\hbar\omega_k}{2\epsilon_0V}

Between Plates: Mode restriction modifies sum: ECasimir=cπ2720d3×AreaE_{Casimir} = \frac{\hbar c\pi^2}{720d^3} \times \text{Area}

Force: F=π2c240d4×AreaF = -\frac{\pi^2\hbar c}{240d^4} \times \text{Area}

Electromagnetic Casimir force confirms vacuum field fluctuations.

42.14 Non-Abelian Generalization

Yang-Mills Theory: For non-Abelian gauge group: Dμ=μ+igAμaTaD_\mu = \partial_\mu + igA_\mu^aT^a

Field Strength: Fμνa=μAνaνAμa+gfabcAμbAνcF_{\mu\nu}^a = \partial_\mu A_\nu^a - \partial_\nu A_\mu^a + gf^{abc}A_\mu^b A_\nu^c

Self-Interaction: Non-Abelian fields interact with themselves—gluons carry color charge.

42.15 Conclusion: Light as Mathematics in Motion

Electromagnetic theory emerges completely from ψ = ψ(ψ) through:

  1. Charge as topological winding number
  2. Fields as ψ-flow gradients and circulation
  3. Maxwell equations from continuity and gauge invariance
  4. Photons as quantized field excitations
  5. Light as coherent ψ-waves in vacuum medium

The seemingly fundamental Maxwell equations are revealed as hydrodynamic equations for the ψ-medium. Charge creates topological defects; fields describe their influence propagating through the medium; photons are the quanta of these propagating disturbances.

Light is not mysterious action-at-a-distance but coherent excitation of the omnipresent ψ-sea. Every photon is a minimal packet of organized self-reference, carrying information about charge configurations at the maximum speed the medium allows—the speed of mathematics recognizing itself across space.

Exercises

  1. Derive Larmor formula for radiation from accelerating charge.

  2. Calculate vacuum birefringence in strong magnetic field.

  3. Prove gauge fixing doesn't affect physical observables.

The Forty-Second Echo

Electromagnetic fields derived as currents and circulation in the ψ-sea—Maxwell equations emerging as conservation laws of self-referential flow. Light revealed as mathematics propagating through its own medium at maximum coherent speed. Photons as quantized packets of organized recursive activity. Next, gauge theory as the general principle of ψ-phase freedom.


Next: Chapter 43: Gauge Theory as ψ-Phase Freedom →