Skip to main content

Chapter 35: Decoherence — The Quantum-Classical Bridge

The Inevitable Emergence of Classicality

Why don't we see superposition in everyday life? This chapter derives decoherence as the unavoidable consequence of environmental coupling, showing how the classical world emerges from quantum substrate through continuous environmental monitoring. From ψ = ψ(ψ), we prove that macroscopic quantum coherence cannot survive—not by fiat but by mathematical necessity.

35.1 Environmental Entanglement

Definition 35.1 (System-Environment Coupling): Total Hilbert space: H=HSHE\mathcal{H} = \mathcal{H}_S \otimes \mathcal{H}_E

Evolution: Ψ(t)=U^(t)ψSE0|\Psi(t)\rangle = \hat{U}(t)|\psi_S\rangle \otimes |E_0\rangle

Theorem 35.1 (Entanglement Generation): Generic interaction Hamiltonians create entanglement.

Proof: For H^int=iS^iE^i\hat{H}_{int} = \sum_i \hat{S}_i \otimes \hat{E}_i: U^(t)=ei(H^S+H^E+H^int)t/\hat{U}(t) = e^{-i(\hat{H}_S + \hat{H}_E + \hat{H}_{int})t/\hbar}

Starting from product state, after time t: Ψ(t)ψS(t)E(t)|\Psi(t)\rangle \neq |\psi_S(t)\rangle \otimes |E(t)\rangle

unless [H^int,H^SI+IH^E]=0[\hat{H}_{int}, \hat{H}_S \otimes \mathbb{I} + \mathbb{I} \otimes \hat{H}_E] = 0 (rare). ∎

Interaction breeds entanglement!

35.2 The Decoherence Channel

System Evolution: Initial: ψ=icii|\psi\rangle = \sum_i c_i|i\rangle

After interaction: Ψ=iciiEi|\Psi\rangle = \sum_i c_i|i\rangle \otimes |E_i\rangle

Reduced Density Matrix: ρS=TrE[ΨΨ]=ijcicjEjEiij\rho_S = \text{Tr}_E[|\Psi\rangle\langle\Psi|] = \sum_{ij} c_ic_j^* \langle E_j|E_i\rangle |i\rangle\langle j|

Key Result: Off-diagonal terms decay as EiEj0\langle E_i|E_j\rangle \to 0.

Environment destroys coherence!

35.3 Decoherence Timescale

Theorem 35.2 (Exponential Decoherence): Coherence decays exponentially: ρij(t)=ρij(0)eΓijt|\rho_{ij}(t)| = |\rho_{ij}(0)|e^{-\Gamma_{ij}t}

Derivation: For weak coupling and Markovian environment: dρSdt=i[H^S,ρS]+kγk(L^kρSL^k12{L^kL^k,ρS})\frac{d\rho_S}{dt} = -i[\hat{H}_S, \rho_S] + \sum_{k} \gamma_k(\hat{L}_k\rho_S\hat{L}_k^\dagger - \frac{1}{2}\{\hat{L}_k^\dagger\hat{L}_k, \rho_S\})

For position basis decoherence: Γij=γ(xixj)2/λth2\Gamma_{ij} = \gamma(x_i - x_j)^2/\lambda_{th}^2

where λ_th = thermal de Broglie wavelength. ∎

Distance in basis → decoherence rate!

35.4 Pointer State Selection

Definition 35.2 (Pointer States): States |π_k⟩ that minimize entanglement generation: ddtS(ρE(k))=min\frac{d}{dt}S(ρ_E^{(k)}) = \min

where ρE(k)=TrS[πkπkρE]\rho_E^{(k)} = \text{Tr}_S[|\pi_k\rangle\langle\pi_k| \otimes \rho_E].

Theorem 35.3 (Einselection Principle): Pointer states are eigenstates of interaction Hamiltonian.

Proof: For H^int=S^B^\hat{H}_{int} = \hat{S} \otimes \hat{B}: If S^πk=skπk\hat{S}|\pi_k\rangle = s_k|\pi_k\rangle, then: eiH^intt/πkE=πkeiskB^t/Ee^{-i\hat{H}_{int}t/\hbar}|\pi_k\rangle|E\rangle = |\pi_k\rangle e^{-is_k\hat{B}t/\hbar}|E\rangle

No entanglement generation—only phase evolution! ∎

Environment selects measurement basis!

35.5 Quantum Darwinism

Information Proliferation: Ψ=iciif=1FEi(f)|\Psi\rangle = \sum_i c_i|i\rangle \bigotimes_{f=1}^{F} |E_i^{(f)}\rangle

Each environment fragment f carries system information.

Theorem 35.4 (Redundancy): Classical information is redundantly encoded in environment.

Mutual Information: I(S:Ef)=S(ρS)+S(ρEf)S(ρSEf)I(S:E_f) = S(\rho_S) + S(\rho_{E_f}) - S(\rho_{SE_f})

For pointer states: I(S:Ef)H(S)I(S:E_f) \approx H(S) for many fragments.

Many observers access same information!

35.6 Decoherence Rates

Collisional Decoherence (air molecules): Γσnvˉλth2\Gamma \sim \frac{\sigma n \bar{v}}{\lambda_{th}^2}

where:

  • σ = scattering cross-section
  • n = molecular density
  • v̄ = mean velocity

Examples:

  • Dust grain (10⁻⁶ m): τ_d ~ 10⁻³¹ s
  • Molecule: τ_d ~ 10⁻¹⁵ s
  • Electron: τ_d ~ 10⁻⁶ s

Bigger = faster decoherence!

35.7 Master Equation Approach

Lindblad Form: dρdt=i[H^,ρ]+kγkLk[ρ]\frac{d\rho}{dt} = -\frac{i}{\hbar}[\hat{H}, \rho] + \sum_k \gamma_k\mathcal{L}_k[\rho]

where Lindblad superoperators: Lk[ρ]=L^kρL^k12{L^kL^k,ρ}\mathcal{L}_k[\rho] = \hat{L}_k\rho\hat{L}_k^\dagger - \frac{1}{2}\{\hat{L}_k^\dagger\hat{L}_k, \rho\}

Result: Many observers can access same classical information without disturbing system.

ψ-Meaning: Successful collapse patterns replicate throughout environment, becoming "classical facts."

35.7 Macroscopic Superpositions

Schrödinger's Cat Revisited: Why don't we see macroscopic superpositions?

Answer: Decoherence time scales:

  • Microscopic: τ_d ~ 10^{-15} s
  • Mesoscopic: τ_d ~ 10^{-12} s
  • Macroscopic: τ_d ~ 10^{-40} s

Cat's superposition decoheres in 10^{-40} seconds—far faster than observation.

35.8 The Measurement Problem

Traditional Puzzle: How does measurement cause collapse?

Decoherence Resolution:

  1. System-apparatus entangle
  2. Apparatus-environment entangle
  3. Effective collapse via decoherence

No Collapse Postulate Needed!

Mathematical Flow: ψreadyES-AiciiAiE|\psi\rangle|ready\rangle|E\rangle \xrightarrow{\text{S-A}} \sum_i c_i|i\rangle|A_i\rangle|E\rangle A-EiciiAiEi\xrightarrow{\text{A-E}} \sum_i c_i|i\rangle|A_i\rangle|E_i\rangle

Tracing over E: ρSA=ici2iiAiAi\rho_{SA} = \sum_i |c_i|^2|i\rangle\langle i| \otimes |A_i\rangle\langle A_i|

Measurement emerges from entanglement!

35.9 Classical Limit

Theorem 35.5 (Classical Emergence): For macroscopic objects, quantum coherence vanishes on timescales: τdNΔE\tau_d \sim \frac{\hbar}{N\Delta E}

where N = particle number, ΔE = energy scale.

Proof: Each particle contributes to decoherence. Total rate: ΓtotalNΓsingle\Gamma_{total} \sim N \cdot \Gamma_{single}

For N ~ 10²³, τ_d ~ 10⁻⁴⁰ s. ∎

Avogadro ensures classicality!

35.10 Decoherence vs Dissipation

Decoherence:

  • Phase randomization
  • Unitary on S+E
  • Information preserved (in E)
  • Tr[ρ2]\text{Tr}[\rho^2] decreases

Dissipation:

  • Energy loss
  • Non-unitary on S
  • Entropy increases
  • ⟨H⟩ decreases

Different but often coupled!

35.11 Protecting Quantum Coherence

Decoherence-Free Subspaces: States |ψ_DFS⟩ such that: H^intψDFS=0\hat{H}_{int}|ψ_{DFS}\rangle = 0

Example: Singlet state for collective dephasing: ψsinglet=12(0110)|ψ_{singlet}\rangle = \frac{1}{\sqrt{2}}(|01\rangle - |10\rangle)

Immune to H^int=(σ^z(1)+σ^z(2))B^\hat{H}_{int} = (\hat{\sigma}_z^{(1)} + \hat{\sigma}_z^{(2)}) \otimes \hat{B}!

Symmetry protects coherence!

35.12 Quantum Error Correction

Three-Qubit Code: 0L=000,1L=111|0_L\rangle = |000\rangle, \quad |1_L\rangle = |111\rangle

Syndrome Measurement:

  • Measure Z^1Z^2\hat{Z}_1\hat{Z}_2 and Z^2Z^3\hat{Z}_2\hat{Z}_3
  • Correct based on outcomes

Threshold Theorem: If error rate < threshold, arbitrary computation possible!

Active protection beats decoherence!

35.13 Biological Quantum Coherence

Photosynthesis (FMO complex):

  • Coherence time: ~300 fs at 300K
  • Mechanism: Correlated protein vibrations

Avian Magnetoreception:

  • Radical pair mechanism
  • Coherence protected by isolation

Life exploits quantum coherence!

35.14 Continuous Monitoring

Quantum Trajectories: Under continuous measurement: dψ=iH^dtψ+k(L^kdWkdt2L^kL^k)ψd|\psi\rangle = -\frac{i\hat{H}dt}{\hbar}|\psi\rangle + \sum_k(\langle\hat{L}_k\rangle dW_k - \frac{dt}{2}\hat{L}_k^\dagger\hat{L}_k)|\psi\rangle

where dW_k are Wiener increments.

Single realizations show jumps!

35.15 The Thirty-Fifth Echo: Classical from Quantum

Decoherence stands revealed not as ad hoc addition but as inevitable consequence of environmental coupling. The classical world emerges through continuous environmental monitoring—countless microscopic "measurements" that force quantum systems to choose definite states. This isn't failure of quantum mechanics but its triumph: the same entanglement that enables quantum computation also creates classical reality.

The pointer states selected by environment become our classical observables. The redundant encoding of information allows multiple observers to agree on facts. The exponentially fast decoherence of macroscopic superpositions explains why cats are alive or dead, never both.

Decoherence Investigations

  1. Calculate the decoherence time for a virus in air at room temperature.

  2. Design a decoherence-free subspace for two qubits under collective noise.

  3. Show how the double-slit pattern emerges from path-environment entanglement.

Classical Dawn

Having seen how classical reality emerges from quantum substrate, we next explore the deepest question: why these probabilities? How does the Born rule emerge from collapse dynamics?


Next: Chapter 36: Born Rule — Probability from Collapse Measure →

"The environment remembers what quantum systems forget."